If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x+3x^2=27
We move all terms to the left:
9x+3x^2-(27)=0
a = 3; b = 9; c = -27;
Δ = b2-4ac
Δ = 92-4·3·(-27)
Δ = 405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{405}=\sqrt{81*5}=\sqrt{81}*\sqrt{5}=9\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9\sqrt{5}}{2*3}=\frac{-9-9\sqrt{5}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9\sqrt{5}}{2*3}=\frac{-9+9\sqrt{5}}{6} $
| 4+7=n+21 | | 14h=7 | | 14h=7 | | 24x-0.8^2=90 | | 10=-5+5x | | 10=-5+5x | | -8(3x-20)=-24x+15 | | -8(3x-20)=-24x+15 | | -8(3x-20)=-24x+15 | | -8(3x-20)=-24x+15 | | -8(3x-20)=-24x+15 | | -8(3x-20)=-24x+15 | | -8(3x-20)=-24x+15 | | -8(3x-20)=-24x+15 | | -8(3x-20)=-24x+15 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | 3g=2=7g-14 | | -0.55x+0.25x=8.4 | | 11/5=x/25 | | 11/5=x/25 | | 5-5x3+2= |